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FOREWORD

This report presents the second year results of an investigation being con-
ducted under Contract NAS8-26363 for NASA George C. Marshall Space
Flight Center under the technical direction of the Aero-Astrodynamics
Laboratory, Dynamics and Control Division. Dr. S. Winder is the tech-
nical monitor. The study is being performed by Convair Aerospace
Division of General Dynamics under the direction of Mr. R. Huntington,
project leader.

The author is indebted to Mr. H. Riead for his assistance in performing
the numerical analysis.
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SUMMARY

A totally reusable space shuttle configuration has been analyzed during
ascent flight to determine its response to atmospheric turbulence. Re-
sponses in the form of booster and orbiter body accelerations and booster
wing root shear, bending moment and torque were obtained due to random
and quasi-square-wave discrete turbulence. The configuration was also
analyzed with booster aerodynamic surfaces removed to simulate an
expendable booster. Symmetric and antisymmetric analyses were per-
formed. Propellant sloshing, gust penetration, and automatic control
system effects were included.

The steady-state aerodynamic method of Woodward was used to derive
the generalized aerodynamic forces using the standard quasi-steady
assumption. Aerodynamic interference effects between adjacent wings
and bodies were found to be significant. Total normal force and moment
data computed by the Woodward method agreed well with wind tunnel values.

It was found that the symmetric responses were generally higher than the
antisymmetric ones. The stability augmentation system tended to lower
the booster accelerations in the symmetric case, while increasing the
orbiter accelerations.

Loads due to the 9 m/s quasi-square-wave gust were higher than the 3a
random turbulence loads, indicating that the discrete gust design criterion
may be conservative. The elastic portion of the response accounted for
about 15% of the total wing load in the discrete gust analysis, while in the
random case the elastic effect was small.
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SECTION 1

INTRODUCTION

This report presents the results of the second year's work under Contract NAS8-26363,
Aeroelastic Effects on Shuttle Vehicle Dynamics. The first year of the study is docu-
mented in References 1 and 2.

During the first year, a method was developed for determining the response of space
shuttle to atmospheric turbulence. The objective of the second year's effort was to
apply this technique to the shuttle configuration during ascent flight.

The analysis method accounts for propellant sloshing, gimbaled engine dynamics and
stability augmentation system (SAS)/elastic vehicle coupling. The problem is formu-
lated in the frequency domain to permit the use of existing unsteady or quasi-steady
state aerodynamic theories based on harmonic motion for computing generalized aero-
dynamic forces. Either discrete or random turbulence can be treated. For the
random case, statistical outputs are generated relating vehicle loads and accelerations
to level of turbulence. A Fourier series is used to approximate the discrete gust
shape. Discrete responses are in the form of time histories.

A finding of the first year's study was that properly predicting flow interference,
thickness, angle-of-attack, and body aerodynamics is more important for space shuttle
than including unsteady aerodynamic lag effects for the low to moderate reduced-
frequency range of interest in the turbulence response problem. It was recommended
that the Woodward steady-state aerodynamic method (Reference 3) be applied in future
space shuttle turbulence response studies using the standard quasi-steady state
assumption which includes aerodynamic damping due to plunging velocity.

In the study reported here, the space shuttle configuration shown in Figure 1-1 was
analyzed at Mach numbers of 0.8 and 1.2, which are in the region of maximum dynamic
pressure on the ascent trajectory (Figure 1-2). Symmetric and antisymm3tric
responses to random and discrete turbulence were obtained. The turbulence models
were as specified in Reference 4. The Woodward aerodynamic method was used to
compute the generalized forces. To simulate a non-flyback booster, calculations were
also made for the configuration shown in Figure 1-1 with all booster aerodynamic
surfaces removed. Propellant sloshing effects were included. The SAS was included
in one symmetric condition. A summary of conditions analyzed is given in Table 1-1.

Section 2 contains detailed discussions of the modal and aerodynamic analyses, and
results of the turbulence response calculations. Conclusions and recommendations
for further work are presented in Section 3.

1-1



oC cmg cn. -n
CO C, tO o

COD U, N

II I I t I I II cII I .CO

7o ;* C',
- ., C0 D . -

CD w 4001-ra CD E
-

0
C.eZ n 

[-U U z L L 
Ur C-4

E

I II

02e

E

1-2

r



FLIGHT TIME (sec)

FLIGHT TIME (sec)

Figure 1-2. Ascent Trajectory
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Table 1-1. Conditions Analyzed

Condition Mach Booster Aero Boundary Response
No. No. Surfaces Condition SAS Type

1 1.2 On Sym. Off Discrete

2 1.2 On Sym. Off Random

3 1.2 On Sym. On Random

4 1.2 Off Sym. Off Random

5 1.2 On A/S Off Random

6 1.2 On A/S Off Discrete

7 1.2 Off A/S Off Random

8 0.8 On Sym. Off Random

9 0.8 Off Sym. Off Random

10 0.8 On A/S Off Random

11 0.8 Off A/S Off Random
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SECTION 2

TECHNICAL DISCUSSION

Significant effort was put forth in deriving the input data for the turbulence response
analysis. Therefore, Sections 2.1 and 2.2 present details concerning the modal and
aerodynamic analyses, respectively. A detailed discussion of the turbulence response
analysis, along with significant results, is presented in Section 2.3.

2.1 MODAL ANALYSIS

The NASTRAN computer program (Reference 5) was used to obtain the structural
vibration modes for the mated space shuttle configuration. The over-all structural
idealization is shown in Figure 2-1. The orbiter body is represented as a flexible beam,
and the orbiter aerodynamic surfaces are rigid. The booster body and aerodynamic
surfaces are elastic, represented in considerable structural detail. By use of the
Guyan reduction (Reference 5), the dynamic degrees of freedom were reduced to 107
for the symmetric analysis and 106 for the antisymmetric case.

BOOSTER
TAIL

AFT ATTACH
LINKS

ORBITER q,

FORWARD ATTACH
LINKS

BOOSTER
WING

BOOSTER

BOOSTER t(L -' CANARD

Figure 2-1. Over-all Structural Idealization
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The modal frequencies are summarized in Table 2-1. The mode shapes for t = 75
seconds are shown in Figure 2-2 for the symmetric case. Figure 2-3 presents the
corresponding antisymmetric modes.

Table 2-1. Summary of Modal Frequencies (Hz)

Type t = 60 sec t = 75 sec

Symmetric 1.07 1.09
1.17 1.17
1.48 1.48
2.05 2.06
2.18 2.19
2.49 2.49
2.80 2.89
3.02 3.04

Antisymmetric 0.87 0.87
1.26 1.28
1.77 1.77
2.37 2.52
3.19 3.19
3.45 3.82
4.28 4.32

The mode shapes at t = 60 seconds were assumed to be identical to those at 75 seconds.
The generalized masses were corrected for the heavier mass distribution by the
equation

n

mT60j = R7 5 j +Z Ami iJ (1)

where Itj is the generalized mass of mode j at time t, Am i is the change in mass at

the it structural grid point, 0ij is the deflection at grid point i due to mode j, and the

summation is over all grid points, n.

The frequencies were corrected by the equation

'(60j= c75j Ir -o
16j

2-2
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The effect of removing the booster aerodynamic surfaces was accounted for in a
similar fashion. The mode shapes and frequencies were assumed to remain constant,
and the generalized masses were adjusted according to Equation 1'. Modes consisting
almost entirely of booster aerodynamic surface motion were eliminated (symmetric
mode 6 and antisymmetric modes 1, 5 and 7).

2.2 GENERALIZED AERODYNAMIC FORCE DETERMINATION

The steady-state aerodynamic method of Woodward (Reference 3) was applied to the
space shuttle configuration to generate aerodynamic forces. The justification for
using steady-state aerodynamics instead of unsteady is given in Reference 1, To
summarize briefly: the Woodward method accounts for wing-wing, wing-body and body-
body interference, angle-of-attack, thickness and other flow effects not accounted for
in most unsteady theories. The reduced frequency range of interest is low enough in
the shuttle turbulence response problem that aerodynamic lag effects are relatively
small. By using steady-state aerodynamics, the computation of aerodynamic forces
is made once for each Mach number instead of for each value of reduced frequency as
is required in the unsteady case.

Assuming harmonic motion, the quasi-steady complex downwash at point j due to a unit
amount of the kth generalized coordinate is

Wjk = Vajk - i whjk (3)

where the first term is the downwash due to the flight velocity, V, and the modal angle
of attack, ao; and the second term is the downwash induced by the surface plunging
motion of amplitude h and frequency w.

The generalized aerodynamic force consists of two parts; that due to turbulence, and
that due to vehicle motion. Specifically, the generalized aerodynamic force acting on
mode r is given by

Qr = qs Qrs + qf Qrf (4)
s=1

Response Gust

where Qrs is the rth generalized aerodynamic force due to a unit value of the vehicle
displacement in mode s, qf is the gust amplitude, and Qrf is the rth generalized aero-
dynamic force due to a unit gust. Qrs is defined by the equation

Qrs(C) =f hr(x,y,z) Aps(x,y,z,W) dS (5)

S

2-7



where Ap s is the net pressure acting on the vehicle due to oscillation in mode s, and
the integration is over the surface of the vehicle.

The generalized force due to the unit sinusoidal gust is given by:

Qrf() =fhr (x,y, z) Apf(x,y,z, ) dS (6)
S

where Apf is the net pressure over the vehicle surface due to the downwash produced
by a continuous sinusoidal gust wave traveling across the vehicle. This sinusoidal
gust velocity may be expressed as:

Wf = qfe i t

qf (cos Wt + i sin wt) (7)

The downwash on an oscillating airfoil in a flow of velocity (V) is given by:

w(t) -- Va(t)- (t) (8)

where ao is the angle of attack and h is the plunging velocity. For harmonic motion,
the complex downwash may be written:

-w = V a - i wh (9)

Equating (7) and (9) yields:

Wf = w

qf
a = q1 f cos wt (10)

h = - qMLsin wt (11)

If xi is the distance from a gust reference axis to the downwash at point i on the vehicle
and k is the reduced frequency

(: (k by v(12)

then Equations 9 and 10 become:

_iqcos (13)
q

= Vcos k xi (13)

2-8



i = -sin k xi
i Vk

(14)

where

- Xi
Xi b=

Equations 13 and 14, when substituted for ac and h in Equation 3, give the downwash
distribution over the vehicle due to unit turbulence.

Having the unit downwash distributions, the Woodward method is used to derive the net
pressure distributions required to solve Equations 5 and 6. Essentially, a matrix of
influence coefficients, [F], is generated relating pressure to downwash in the form

(15)

Woodward represents the vehicle as a system of source, doublet, and vortex singu-
larities. The wings and bodies are divided into panels defining the boundaries of planar
singularities. Line singularities distributed along the body centerline simulate body lift.

The aerodynamic panel representation employed here, shown in Figure 2-4, consists of
91 wing and 126 body panels. The body centerline points locating the line singularities

/////
j , I , 'I", I,/, i I!-b/!/l -V / /1/ l/ V V V V9
II_7 li ' r. I I[ -L I 1 I/ I I /

I

L /. / ..

Figure 2-4. Aerodynamic Panel Representation
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(not shown) were generally distributed per each ring of body panels and continued
forward to the nose of each body at about the same spacing.

The booster wing, canard, and tail panels were removed to represent the configuration
without booster aerodynamic surfaces.

There is no convenient way to display the aerodynamic influence coefficient data gen-
erated in this study. There were some interesting results, however, which will be
discussed briefly.

Figure 2-5 shows the nondimensional aerodynamic center location and the total normal
force coefficient derivative as a function of Mach number for the booster in the presence
of the orbiter. The continuous curves are based on wind tunnel data as reported in
Reference 7. The points represent the Woodward results at Mach number 0.8 and 1.2.
Exact agreement is shown except for the aerodynamic center location at Mach 1.2
where the calculated value is 5% low. This is a remarkable agreement and increases
the confidence in the pressure data for which there are no corresponding wind tunnel
measurements.

The magnitude of the flow interference effects is suggested by Table 2-2, which com-
pares the total normal force coefficient of the mated configuration with that of the

O ANALYSIS

--- EXPERIMENTAL

U. I I I . - -

2 3

MACH NUMBER

4

Figure 2-5. Booster Longitudinal Characteristics in Presence of Orbiter
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Table 2-2. Inter-vehicle Flow Interference Effects

(M = 0.8, a = 0)

Total Normal Force
Coefficient

Booster Alone

Orbiter Alone

Total

Booster in Presence of Orbiter

Orbiter in Presence of Booster

Total

0.0654

0.0096

0.0750

0.0925

0.0083

0.1008

(Interference = 26% of total)

independent vehicles at 0.8 Mach number. Interference between the vehicles accounts
for 26% of the total normal force coefficient of the mated configuration. These results
were obtained from the Woodward analysis.

Table 2-3 summarizes the total normal force coefficients derived using the Woodward
analysis at Mach numbers of 0.8 and 1.2 at 0 and 6 degrees angle-of-attack. The top
figures correspond to the mated configuration and the numbers in parentheses pertain
to the booster in presence of the orbiter. The effect of removing the booster aero-
dynamic surfaces can also be seen.

Table 2-3. Total Normal Force Coefficient Summary

M = 0.8 M = 1.2
With Aero Surfaces W/O Aero Surfaces With Aero Surfaces W/O Aero Surfaces

0.1008 -0.0085 0.0395 -0.0472
o= 00

(0.0925) (0.0072) (0.1014) (0.0225)

0.4921 0.1342 0.5359 0.1753
__= 6°

(0.3534) (0.0073) (0.4211) (0.0557)

( ) = Booster in presence of orbiter.
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Figure 2-6 shows typical pressure coefficient distributions for the booster body. The
pressure coefficient is defined by the equation

P - P (16)

where p is the local pressure and p, and q, are the free-stream pressure and dynamic
pressure, respectively.

The top portion of the figure shows the effect of booster/orbiter interference. The
dashed curve represents the pressure distribution for the isolated booster body. The
corresponding pressure distribution in the presence of the orbiter is shown by the
solid curve. These distributions are for a line running from nose to tail, 45 degrees
from the top of the booster.

The bottom curves of Figure 2-6 show the effect of the booster aerodynamic surfaces
on the booster body pressure distribution at 135 degrees from the top. All of the in-
formation shown in this figure is for 6 degrees angle-of-attack and Mach number 1.2.

Typical wing pressure distributions are shown in Figure 2-7. This figure shows the
net (upper surface minus lower surface) pressure distributions in the chordwise

ISOLATED BODY
BOOSTER IN PRESENCE OF ORBITER

NOSE

= 450

AC = W \/O BOOSTER AERO SURFACES

WITH BOOSTER AERO SURFACES135

WITH BOOSTER AERO SURFACES 

Figure 2-6. Booster Body Pressure Distributions (M = 1.2, ot = 6 deg)
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I AC = 0.1II p o

ORBITER ALONE

---- ORBITER IN PRESENCE OF BOOSTER

Figure 2-7. Orbiter Wing Pressure Distribution (M = 0.8, a = 0 deg)

direction for four span stations. The solid curves are for the orbiter alone and the
pressures including the presence of the booster are shown by the dashed lines.

Good pressure data is essential when performing any type of elastic vehicle response
or stability analysis in which aerodynamic forces are significant. The preceeding
discussion has presented a brief insight into the complex flow fields associated with
vehicles such as space shuttle. The Woodward method appears at this time to be the
best analytical approach for determining steady-state pressure distributions for com-
plex configurations at subsonic and supersonic speeds. Further correlations with
experimental data are required to corroborate these findings.

2.3 TURBULENCE RESPONSE ANALYSIS

This section presents.a brief review of the equations of motion, a discussion of the
random and discrete turbulence models used, and details and results of the response
calculations. A more detailed discussion of the theory is contained in Reference 1.

Lagrange's equation of motion

d (aL) L + as = r= 1,2, .. n (17)
dt a aqr aqr

2-13



is used to formulate the response problem where

L =T-P

T = kinetic energy

P = potential energy

= dissipation function

Qr = r t h generalized force

qr = rth generalized coordinate

The deflection (h) at any point on the vehicle is given by

h(x,y,z,t) = hr (x,y,z) qr(t) (18)
r=l

where hr is the normalized deflection at the point in the rth mode shape.

Using normal (with respect to the stiffness matrix) modes of vibration as generalized
coordinates, the rth equation of motion is of the form

2
Mrrqr + Drr 4r + Mrr °r qr + 6srs Mrs qr r (19)

s=1

where

.Mrs = generalized mass

Drr = generalized damping

Wr = frequency of mode r

*d* =[I O, r=-s

and the generalized force, Qr, is defined by Equation 4.

Assuming harmonic motion, Equation 19 can be written in matrix form as

Iq() = - [A(w1)' IAf(wj) (20)

2-14



where

Ars= 1- rs (1 + igr) Mrs+ Qrs (21)

=l,r=s

rs IO,r/s

gr '= structural damping coefficient for mode r

w = gust frequency

qr = amplitude of the r t h generalized coordinate

Mrs =Mrs (22)
4pb3

Arf() qf Qrf(o) (23)
4pb3 W2

Qrs(CO)
Qrs(W) Qrs(') (23)Qrs() 4Pb3 02

where p is air density, b is reference length, and qf is the turbulence amplitude.

Transfer functions are formed relating response to turbulence amplitude by the load
summation method, which is written

H(x,y,z, w) = f Fr (x,y,z) qr(w)

1 y Ff(x,y,z,W)
+- q E Fr (x,y,z,0) qr ( + qf (24)

qf r=l qf

where FI is the response (acceleration, shear, moment, or torque) due to the rth

degree of freedom oscillating at a unit frequency, Fr is the load due to the aerodynamic
pressure distribution developed by a unit amount of the rth generalized coordinate
oscillating at frequency Ac, and Ff is the load due to the aerodynamic pressure
distribution produced by a gust wave of frequency o.

For random turbulence, the response power spectral density (PSD), Ox, is related
to the gust PSD, 0, and the transfer function magnitude,' H I, by the equation:

0X(X) = IH()I1 2 0(W) (25)

2-15



The ratio of rms response to rms gust velocity is given by

A o= x | ,(w)d X (26)

where Wc is the integration cutoff frequency. The "characteristic frequency" of the
response, or number of zero crossings with positive slope per second, is expressed
by

WC 1/2

No =1 V W x(X)X dwJ (27)
2'IT 0

The turbulence PSD applied in this study is the 9 9 th percentile curve (including the
dashed portion) shown in Figure 2-8 reproduced from Reference 4. The equation of
the curve is

683.4 (4000K) 1.62
E(K)= (28)

1 + 0.0067 (4000K) 4 . 0 5

where E(K) is the turbulence PSD and K is the wave number. As specified by Reference
4, design turbulence loads are obtained by multiplying the rms loads by a factor of 3.

In the present study, the spectrum was normalized to produce a unity rms value by
dividing Equation 28 by its rms value, 1.94 m/s. Design loads and accelerations are
obtained, therefore, by multiplying their A values by 5.82 m/s.

Discrete turbulence is simulated by a Fourier series.

M

f(t)= ao + E (am cos Wmt + bm sin wmt) (29)
m=l

where

f(t) is the forcing function

M is the number of terms in the series

t = time

W, = m V/T

T
1a = f- | f(t)dt

-T

2-16
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Figure 2-8. Spectra of Detailed Wind Profiles (Reference 4)

T

am =i f(t) cos 4m t dt
-T

T
bm =J f(t) sin Wm t dt

-T

The resulting force time-history f(t) is periodic with period 2T.
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As prescribed by Equation 29, the force is stationary. It is often more convenient
to think of the vehicle as being fixed, with the disturbance moving over it. This is
described by substituting (x/V-t) for t in Equation 29, which yields

M
f(t) = a

o
+ am cos (kmx - wmt) + bm sin (kmx - wmt) (30)

m=1

where

km = Cmb/V

x = x/b

b is the reference length

V is the vehicle velocity

x is the distance from a point on the vehicle to the gust reference axis

By considering that the cosine terms are symmetric and the sine terms are antisym-
metric, Equation 30 can be written in complex form as

f(t) = ao + Re ame -Im bme (31)
m=l m=1

The vehicle response to this disturbance is given by

M

Z (t) = [(amHRm + bmHIm) cos wmt + (bmHRm -amHm) sin Wmt] (32)
m=1

where HR and HI are the real and imaginary components of the mth transfer function

evaluated at frequency m', i.e.,

Hm = HRm + iHIm (33)

The discrete gust used in the present study was the "quasi-square-wave" shape des-
cribed in Reference 4. The gust amplitude was normalized to 1-m/s. The results
must therefore be multiplied by a factor of 9 to correspond to the design value specified
in Reference 4. The gust length was 170 meters, producing a gust period equal to one-
half the period of the first elastic mode at t = 75 seconds. The Fourier series con-
tained 40 terms, resulting in the gust shape shown in Figure 2-9.

2-18



- - - INPUT GUST
FOURIER SERIES
REPRESENTATION

0.2 0.4 0.6 0.8 1.0 1.2
TIME (sec)

Figure 2-9.

1.4 1.6 1.8 2.0

Discrete Gust Time History

A pitch plane stability augmentation system (SAS) was incorporated into the symmetric
analysis for comparison with the unaugmented vehicle response. The SAS block
diagram is shown in Figure 2-10. The SAS effects are included by modifying the A-
matrix in Equation 20. The procedure for doing this is given in detail in Reference 1.

Propellant sloshing parameters for the booster at t = 60 and 75 seconds are shown in
Table 2-4. These values were determined by the method of Reference 8. These modes
were mass coupled to the vehicle modes as described in Reference 1.

Table 2-4. Sloshing Parameters

Time Slosh Mass Slosh Spring Slosh cg
(sec) Tank (kg) (N/m) (m)

60 LO2 205,100 1,162,000 44.0

LH2 12,720 72,000 71.3

75 LO2 205,100 1,211,000 44.8

LH
2

12,720 75,100 74.4
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K I1
A

TA =0. 04 sec

°K= 1

K6, = 0.35 sec

K62 = 0.35 sec

SENSOR NO. 1 LOCATED AT BOOSTER NOSE (STATION 25.4m)

SENSOR NO. 2 LOCATED AT BOOSTER ENGINE GIMBAL (STATION 154. Om)

Figure 2-10. Pitch Plane SAS

Responses were computed for the analysis conditions of Table 1-1 for the following
items:

1. Booster wing root shear

2. Booster wing root bending moment

3. Booster wing root torque (about booster station 84. Om)

4. Booster wing tip acceleration

5. Booster body acceleration at booster station 29.2m

6. Booster body acceleration at booster station 44.6m

7. Booster body acceleration at booster station 59. lm

8. Booster body acceleration at booster station 76.9m

9. Booster body acceleration at booster station 99.2m

10. Orbiter body acceleration at Orbiter station 5. 08m

11. Orbiter body acceleration at orbiter station 24.6m

12. Orbiter body acceleration at orbiter station 45.2m

13. Orbiter body acceleration at orbiter station 68.5m
2-20



Representative transfer functions are shown in'Figures 2-11 through 2-32. All transfer
functions shown herein pertain to flight at Mach 1.2. (Each figure contains three sets
of symbols, corresponding to one degree of freedom, total rigid body response, and
total response including sloshing and elastic modes.), The one degree of freedom cases
represent vertical translation and side translation for the symmetric and antisymmetric
conditions, respectively.

Figure 2-11 through 2-16 apply to the symmetric flight condition with the SAS off and
booster aerodynamic surfaces intact (Conditions 1 and 2 in Table 1-1). Corresponding
plots with the SAS on (Condition 3) are given in Figures 2-17 through 2-22. Antisym-i
metric transfer functions for Conditions 5 and 6 (SAS off, booster aerodynamic surfaces
on) are contained in Figures 2-23 through 2-28. Transfer functions for the conditions
having booster aerodynamic surfaces removed are shown in Figures 2-29 and 2-30 for
the symmetric case and 2-31 and 2-32 for the antisymmetric condition.

The transfer function peaks can generally be seen to coincide with vehicle resonant
frequencies. In some instances, however, a peak occurs at a frequency well above
the highest modal value. This can be seen for example in Figure 2-15. These high-
frequency peaks, probably due to aerodynamic coupling, do not appreciably affect the
results, however. In the random case, this is due to the fact that the turbulence
spectrum drops off rapidly with frequency. Figure 2-33 shows the response power
spectral density for the transfer function of Figure 2-15. Note that the high-frequency
peak is now two orders of magnitude below the peak at 2.2 Hz. In fact, the random
response parameter, A, in all cases had leveled off at 5 Hz. Therefore, 5 Hz was
used as the cutoff frequency in evaluating A and No by Equations 26 and 27.

In the discrete analyses, since the gust wavelength was established so as to excite the
vehicle fundamental structural mode, the high-frequency peak in the transfer functions
had no appreciable effect on the response time histories.

Results of the random analysis are summarized in Tables 2-5 through 2-10. Tables
2-5 and 2-6 give the A and No values respectively for one degree of freedom. Corre-
sponding rigid body results are listed in Tables 2-7 and 2-8. The total A and No

values are listed in Tables 2-9 and 2-10, respectively.

The total A values of booster body and orbiter body acceleration are shown graphically
in Figures 2-34 and 2-35 respectively for the conditions with booster aerodynamic
surfaces intact. Figure 2-34 shows that symmetrically the maximum acceleration
on the booster occurs at 0.8 Mach number. It also shows the effectiveness of the SAS
in reducing the accelerations at 1.2 Mach number. The SAS reduces the booster rms
nose acceleration by 38% and the rms tail acceleration by 7%. In the antisymmetric
case, the booster body rms side acceleration at the nose is the same at Mach 0.8 and
Mach 1.2. At the aft end, however, the rms acceleration is higher at Mach 1.2 by
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Figure 2-33. Booster Body Acceleration Symmetric Power Spectral
Density, Booster Station 29.2m, M = 1.2
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Table 2-5. 1 Degree of Freedom A Values

Response Item Condition No.
2 3 4 5 7 8 9 10 11

Booster Wing
Root Shear (103 N) 56.84 56.84 - 1.659 - 55.66 - 2.522
Root Bending Moment (104N-m) 57.45 57.45 - 1.861 - 61.15 - 2.872 -
Root Torque* (104 N-m) 46.33 46.33 - 5.725 - 34.86 - 4.32 -
Tip Acceleration (10-2 g) 0.937 0.937 - 0.0 - 0.483 - 0.0 -

Booster Body Acceleration (10- 2 g)
Booster Station 29.2m 0.031 0.385 0.021 0.047 0.301 0.054
Booster Station 44.6m
Booster Station 59.1m
Booster Station 76.9m
Booster Station 99.2m

Orbiter Body Acceleration (10-2 'g)
Orbiter Station 5.08m
Orbiter Station 24.6m
Orbiter Station 45.2m
Orbiter Station 68.5m 0.937 0.37 0.031 0.385 0.021 0.483 0.047 0.301 0.054

*About booster station 84. Om

Table 2-6. 1 Degree of Freedom N
o Values

Response Item Condition No.
2 3 4 5 7 8 9 10 11

Booster Wing
Root Shear 1.358 1.358 - 2.496 - 1.348 - 1.763 -
Root Bending Moment 1.467 1.467 - 2.499 - 1.390 - 1.769 -
Root Torque* 1.428 1.428 - 1.326 - 1.437 - 1.119 -
Tip Acceleration 1.153 1.153 - 0.0 - 1.326 - 0.0 -

Booster Body Acceleration
Booster Station 29.2m 0.285 0.995 0.239 0.231 0.766 0.222
Booster Station 44.6m
Booster Station 59.1m
Booster Station 76.9m
Booster Station 99.2m

Orbiter Body Acceleration
Orbiter Station 5.08m
Orbiter Station 24.6m
Orbiter Station 45.2m
Orbiter Station 68.5m 1.153 1.153 0.285 0.995 0.239 1.326 0.231|0.766 0.222

*About booster station 84. Om
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Table 2-7. Rigid Body X Values

Response Item Condition No.
2 3 4 5 7 8 9 10 11

Booster Wing
Root Shear (10 3 N) 61.60 60.09 - 2.881 - 55.92 - 2.431 -
Root Bending Moment (104N-m) 64.21 61.56 - 2.431 - 61.15 - 2.954 -
Root Torque* (104 N-m) 49.30 49.12 - 4.751 - 35.80 - 4.527 -
Tip Acceleration (10-2g) 3.823 2.480 - 1.338 - 2.903 - 0.363 -

Booster Body Acceleration (10-2 g)
Booster Station 29.2m 1.480 0.929 0.190 0.361 0.026 1.788 0.098 0.418 0.105
Booster Station 44.6m 0.698 0.771 0.108 0.136 0.026 0.937 0.047 0.367 0.084
Booster Station 59.lm 0.930 0.994 0.027 0.367 0.049 0.465 0.047 0.326 0.063
Booster Station 76.9m 2.058 1.546 0.083 0.795 0.086 1.323 0.113 0.299 0.036
Booster Station 99.2m 3.615 2.367 0.213 1.293 0.129 2.715 0.206 0.311 0.012

Drbiter Body Acceleration (10-2 'g)
Orbiter Station 5.08m 3.216 1.719 0.337 0.910 0.234 3.385 0.204 0.378 0.096
Orbiter Station 24.6m 1.867 1.078 0.224 0.627 0.195 2.152 0.122 0.290 0.067
Orbiter Station 45.2m 0.682 0.773 0.105 0.578 0.174 0.909 0.045 0.251 0.052
Orbiter Station 68.5m 1.499 1.266 0.037 0.979 0.111 0.839 0.079 0.201 0.019

*About booster station 84. Om

Table 2-8. Rigid Body No Values

Response Item Condition No.
2 3 4 5 7 8 9 10 11

Booster Wing
Root Shear 1.351 1.366 - 1.506 - 1.435 - 1.888 -
Root Bending Moment 1.406 1.457 - 1.924 - 1.390 - 1.898 -
Root Torque* 1.453 1.451 - 1.486 - 1.535 - 1.123 -
Tip Acceleration 1.330 1.895 - 1.029 - 1.550 - 0.901 -

Booster Body Acceleration
Booster Station 29.2m 1.623 2.476 0.281 0.945 0.336 2.007 0.362 0.496 0.211
Booster Station 44.6m 1.690 1.585 0.280 0.630 0.178 2.172 0.375 0.610 0.215
Booster Station 59.1m 1.163 1.120 0.291 0.812 0.238 1.375 0.232 0.766 0.221
Booster Station 76.9m 1.261 1.571 0.296 0.875 0.272 1.301 0.278 0.983 0.243
Booster Station 99.2m 1.325 1.871 0.289 0.892 0.286 1.536 0.298 1.132 0.331

Orbiter Body Acceleration
Orbiter Station 5.08m 1.518 2.653 0.283 0.779 0.274 1.892 0.344 0.616 0.210
Orbiter Station 24.6m 1.585 2.603 0.282 0.920 0.266 1.968 0.356 0.661 0.215
Orbiter Station 45.2m 1.681 1.545 0.280 1.075 0.260 2.180 0.374 0.707 0.220
Orbiter Station 68.5m 1.214 1.372 0.317 1.137 0.225 1.052 0.259 0.901 0.243

*About booster station 84. Om

2-46



Table 2-9. Total A Values

lRespo)nsc Item
4

Condition No.
102

Boosker Wing
Root Shear (103N)
Root Bending Moment (10 4 N-m)
Root Torque* (104 N-m)
Tip Acceleration (10-2 g)

62.45
59.13
50.12
56.88

56.77
55.28
50.61
56.77

4.751
5.100
6.334
4.997

5 7

62.06
66.15
46.77
96.34

8 9

3.802
3.666
4.097
2.080

Booster Body Acceleration (10-2g)
Booster Station 29.2m 8.102 5.001 0.227 2.249 0.086 9.609 0.370 2.285 0.303
Booster Station 44.6m 3.377 2.511 0.145 1.545 0.078 4.626 0.258 1.661 0.229
Booster Station 59.lm 5.831 3.978 0.080 1.666 0.087 9.080 0.167 1.004 0.158
Booster Station 76.9m 4.947 4.514 0.101 1.726 0.105 5.813 0.123 0.572 0.054
Booster Station 99.2m 6.779 6.284 0.217 1.950 0.133 7.551 0.262 1.095 0.096

Orbiter Body Acceleration (10-2g)
Orbiter Station 5.08m 28.77 52.13 0.521 3.148 0.268 41.86 0.900 3.002 0.399
Orbiter Station 24.6m 4.409 13.70 0.275 1.421 0.210 5.388 0.455 1,735 0.275
Orbiter Station 45.2m 4.702 3.011 0.146 1.046 0.183 7.587 0.256 1.671 0.214
Orbiter Station 68.5m 13.10 8.877 0.093 1.586 0.110 19.05 0.154 3.233 0.037

*About booster station 84. Om

Table 2-10. Total No Values

Response Item Condition No.
2 3 4 5 7 8 9 10 11

Booster Wing
Root Shear 2.006 2.032 - 0.929 - 2.086 - 1.329 -
Root Bending Moment 2.279 2.350 - 0.885 - 1.981 - 1.422 -

Root Torque* 2.303 2.235 - 1.311 - 2.260 - 1.151
Tip Acceleration 2.550 2.646 - 3.221 - 2.279 - 1.455

Booster Body Acceleration
Booster Station 29.2m 2.117 1.998 0.511 2.041 0.465 2.184 0.518 1.071 0.461
Booster Station 44.6m 1.786 1.633 0.490 1.061 0.465 1.702 0.525 1.014 0.459
Booster Station 59.lm 2.409 2.248 0.793 1.420 0.430 2.621 0.777 0.994 0.455
Booster Station 76.9m 2.263 1.897 0.586 1.493 0.376 2.762 0.722 1.597 0.412
Booster Station 99.2m 1.905 1.645 0.413 1.863 0.336 1.745 0.522 1.274 0.476

Orbiter Body Acceleration
Orbiter Station 5.08m 1.950 1.267 0.728 2.050 0.347 1.939 0.720 1.052 0.472
Orbiter Station 24.6m 1.631 1.160 0.431 1.351 0.298 1.859 0.495 0.664 0.470
Orbiter Station 45.2m 2.000 2.132 0.608 0.895 0.284 1.983 0.630 0.948 0,471
Orbiter Station 68.5m 2.445 2.235 1.350 1.573 0.362 2.717 1.309 1.360 0.729

*About booster station 84. Om
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Figure 2-34. Booster A Accelerations
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nearly a factor of 2. Figure 2-35 shows that the orbiter symmetric rms nose
acceleration is about five times as large as the booster rms nose acceleration. It is
also interesting to note that while the SAS lowers the booster accelerations, it in-
creases the orbiter nose acceleration by 82%.

The booster and orbiter A accelerations are shown in Figures 2-36 and 2-37, res-
pectively for the conditions with booster aerodynamic surfaces removed. It can be
seen that removing the booster aerodynamic surfaces lowers the A accelerations by an
order of magnitude. The booster and orbiter nose accelerations are consistently higher
at Mach 0.8 than at Mach 1.2.

Responses due to 1-m/s amplitude quasi-square wave discrete turbulence are shown
in Figures 2-38 through 2-46. Figure 2-38 shows envelopes of booster body peak
acceleration for symmetric and antisymmetric turbulence. As in the random case,
symmetric turbulence produces higher accelerations. Corresponding plots for the
orbiter are shown in Figure 2-39. Again, the orbiter nose symmetric acceleration
is considerably higher than for the booster.

Actual response time histories due to the 1-m/s quasi-square-wave gust are given in
Figures 2-40 through 2-46. Booster wing root shear, bending moment, and torque
due to symmetric gust are given in Figures 2-40, 2-41, and 2-42, respectively.
Booster wing tip acceleration is shown in Figure 2-43. All of these figures show the
total, one degree of freedom, and rigid body responses separately. Figures 2-44 and
2-45 show the corresponding booster and orbiter nose acceleration time histories,
respectively. Total antisymmetric responses are shown in Figure 2-46 for booster
wing root shear, bending moment, and torque, and booster wing tip acceleration.

It is interesting to compare the random and discrete turbulence results. Table 2-11
summarizes the booster wing root shear and bending moment at Mach 1.2 due to
symmetric random and discrete turbulence. As specified in Reference 4, the rms
loads from the random analysis based on the 9 9 th percentile PSD were multiplied by
three to yield design values. The discrete quasi-square-wave gust results were
multiplied by nine to yield design values corresponding to a 9 m/s amplitude gust. It
can be seen that the discrete turbulence loads are higher approximately by the ratio

of the discrete turbulence level to the 3or random value 3 ), indicating that the

discrete turbulence design criteria may be overly conservative (corresponding to about
5a random turbulence).

The elastic contribution to the total load is also greater for discrete turbulence. This
is probably because the gust length was set so as to excite the fundamental mode,
which had a large wing motion. In fact in the random case, the elastic effect was to
reduce the total wing root bending moment.
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Figure 2-35. Orbiter A Accelerations

2-50

1-1

0

I-

w

I U
H

Q
Qc;

- 0.2

I 0

:. 1.

Z, 0.1

0

H

L_

0



SYV MMI E TR
0. 004 , ...

0 M = 0.8

. )o. oo2X,0. 002
CM

0 
0 20 40 60 80 100

BOOSTER STATION (m)

ANTISYMMETRIC
0.004

j 0.002

0

0 20 40 60 80 100
BOOSTER STATION (m)

Figure 2-36. Booster A Accelerations (Booster Aerodynamic Surfaces Removed)
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Table 2-11. Booster Wing Root Shear and Bending Moment
Due to Symmetric Turbulence at Mach 1.2

Shear (105 N) Bending Moment (106 N-m)
Total Total

Gust Type Total Rigid Elastic Rigid Total Rigid Elastic Rigid

Random 3.634 3.560 0.074 1.02 3.442 3. 737 -0.295 0. 92

Discrete 7.465 6.416 1.049 1.16 7.316 6.350 0.966 1.15

To determine the criticality of these loads, booster design wing loads were obtained
from Reference 9 and are shown in Table 2-12. The maximum aQ loads include a 20%
allowance for static aeroelastic effects and elastic portion of turbulence response.
From these comparisons, it appears that including the rigid portion of the gust response
in the ascent trajectory analysis and multiplying the results by a factor of 1.2 is con-
servative for space shuttle, although this should be verified by a static aeroelastic
analysis.

Table 2-12. Booster Design Wing Root Shear and
Bending Moment (Reference 9)

Total (Rigid + Elastic) Elastic
Design Shear Bending Moment Shear Bending Moment

Condition (10 5 N) (106 N-m) (105 N) (106 N-m)

Maximum ceQ 28.77 19.65 4.77 3.30
(Mach 1.2)

Reentry 28.94 18.43

2.5g Maneuver 23.08 16.98

Design Gust 22.62 16.53
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SECTION 3

CONCLUSIONS AND RECOMMENDATIONS

A fully reusable space shuttle configuration has been analyzed at Mach numbers 0. 8
and 1.2 during ascent flight to determine its responses to random and discrete atmos-
pheric turbulence. To simulate an expendable booster, the booster aerodynamic
surfaces were removed for portions of the analysis.

Aerodynamic interference effects have been shown to be significant for space shuttle.
The Woodward method appears to be the best analytical approach for determining
steady-state pressure distributions for complex configurations at subsonic and super-
sonic speeds. The Woodward method has correlated well with wind tunnel total force
and moment data for the configuration analyzed. Further testing is desirable to
provide pressure data for complex configurations such as space shuttle to verify the
Woodward approach.

The symmetric random turbulence analysis showed higher accelerations on the booster
and orbiter at Mach 0.8 than at Mach 1.2. Antisymmetrically, booster accelerations
are higher at 1.2 Mach number. The booster and orbiter accelerations are lower,
however, by an order of magnitude in the antisymmetric condition than in the sym-
metric case.

Inclusion of the booster stability augmentation system lowered the symmetric accelera-
tions for the booster, but agravated the orbiter front-end response. Loads due to a 9
m/s quasi-square-wave gust were found to be higher than 3a random turbulence loads,
indicating that the discrete gust design criterion may be conservative. It was found
that elastic response accounted for about 15% of the total wing gust load in the discrete
analysis, while in the random case, the elastic effect was small.

Comparison with booster wing design loads indicates that the wing elastic gust loads
fall well within the 20% increase in total rigid body loads allocated for elastic effects.
Static aeroelastic loads, not computed in the present study, are required to determine
the actual design margin.

The turbulence response analysis method employed herein is costly and requires
extensive input data. Simpler methods would be more attractive for preliminary
design and configuration trade studies. The approximate methods would have to be
evaluated against the present approach, however, to determine whether the results are
sufficiently accurate.
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